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Group: A
Ordinary Differential Equation
Answer any four questions from question no. 1-6 in this group. [4 x 5 = 20 marks]
1. Find the particular solution of the differential equation :(cosy)dx + (1 4+ 2e*)(siny)dy = 0;
y =7 when z = 0.
2. Prove that the differential equation of all circles touching x-axis at the origin is
(2% — y*)dy — 2zydx = 0.
3. Solve: Z—gyc = %
4. Solve: zdx + ydy + % =0
5. Solve: % + ¥ = 22 given y = 1 when x = L.

dz




6. Solve: % 4 S0 — 43(cog )2,
Group: B
Calculus
Answer any six questions from question no. 7-16. [6 x 5 = 30 marks]
7. a. Let {z,} be a sequences of real numbers where z,, = — 25 . State whether {z,,} is bounded
or not. If possible find sup {z,} and inf {z,} . 3]
b. State whether the sequence {3’;111} is monotone increasing or monotone decreasing.  [2]
8. Prove that the sequence {u,} defined by u; = V5 and Uni1 = \/Du, for n > 1 is convergent.
Also find lim w,,. [4+1]
n—oo
9. a. Let lim a, = 0. Does it always follows the series Z a, is convergent? Explain it with the
n—o0
n=1
help of an example. 3]
b. Let Z a,, and Z b,, be two series of real numbers such that Z anby, is convergent. Does
n=1 n=1 n=1
it always implies Z a, and Z b, are convergent 7 2]
n=1 n=1
10. Test the convergence of the following series :
S An +3
3
a;Zlnn—I—l (n+3) 3]
b. 1+ 435+ 355+ a1+ e 2]
11. a. Test the convergence of the series Z e’ 2]
n=1
b. Sketch the graph of the function f(x) =sinz, = € R. Hence determine the continuity of f
on R. 3]
12. a. Prove that x%l + I—ZQ + xl—_63 = 0 has one solution between 1 and 2 and another solution
between 2 and 3. 3]
b. Let )
zer x#0
fay=q
0 ,z=0
Check whether f is continuous at x=0 . 2]
13. A function is defined in (0, c0) by
1 — 22 O<zx<1
f(z) = log x A< <2
10g2—1+%x 2 < x < o0.
Obtain the derived function f" and its domain. 5]
14. a. Verify Rolle’s theorem for f(z) = 2® — 62? + 11z — 6, z € R. 3]
b. If a1, as, az be all positive numbers. Find lim {x — (& —ay)(z — ay)(z — CL3)}. 2]
n—oo
15. If y = cos(msin~' z) , then prove that (1 — 22)y,i2 — (2n + Daypss + (m? —n?)y, = 0. [5]



16. a. Find the power series expansion of the function f(x) = cosz, = € R.
b. Let f be a real valued function defined over [—1, 1] such that

xcos% ,x # 0
f(x):{ 0 ,z=0.

Does the Lagrange’s mean value theorem holds for f in [—1,1] .



